Kunststoff-Fertigteile

ELECTRICAL PROPERTIES AT $23{ }^{\circ} \mathrm{C}$			
Electric strength (15)	IEC 60243-1	$\mathrm{kV} / \mathrm{mm}$	24
Electric strength (15) ++	IEC 60243-1	$\mathrm{kV} / \mathrm{mm}$	
Volume resistivity +	IEC 60093	$\Omega \cdot \mathrm{cm}$	$>10^{14}$
Volume resistivity ++	IEC 60093	$\Omega \cdot \mathrm{cm}$	
Surface resistivity +	IEC 60093	Ω	$>10^{13}$
Surface resistivity ++	IEC 60093	Ω	
Relative permittivity $\boldsymbol{\varepsilon}$			
- at $100 \mathrm{~Hz}+$	IEC 60250	-	3,20
- at $100 \mathrm{~Hz}++$	IEC 60250	-	
- at $1 \mathrm{MHz}+$	IEC 60250	-	3,6
- at $1 \mathrm{MHz}++$	IEC 60250	-	
Dielectric dissipation factor tan Delta δ			
- at $100 \mathrm{~Hz}+$	IEC 60250	-	0,0010
- at $100 \mathrm{~Hz}++$	IEC 60250	-	
- at $1 \mathrm{MHz}+$	IEC 60250	-	0,002
- at $1 \mathrm{MHz}++$	IEC 60250	-	
Comparative tracking index (CTI) +	IEC 60112	-	175
Comparative tracking index (CTI) ++	IEC 60112	-	

Legend

1. Following the ISO 62 written procedures $\emptyset 50 \times 3 \mathrm{~mm}$.
2. The values listed for properties are largely taken from the material sheets supplied by raw material suppliers and other publications.
3. The properties listed are all values for semi-crystalline materials, and not amorphous materials.
4. Valid for just a few hours of thermal stress for applications where there is little or no mechanical stress.
5. Quoted thermal stability over $5,000 / 20,000$ hours. Beyond this period, the tensile strength decreases to around 50% of the initial value. As with all thermoplastics, the maximum permissible operating temperature is in many cases primarily dependent on the duration and magnitude of the mechanical stress which occurs during exposure to heat.
6. In view of the reduction in impact strength with decreasing temperature, the lower service temperature limit is in practice particularly determined by the magnitude of the impact stress applied to the material. The values listed here are based on adverse shock loads and should not be considered an absolute practical limit.
7. It should be noted that these values, which have been estimated from the material sheets provided by raw material suppliers, must under no circumstances be taken as a guide to behaviour or reaction when the material is subject to fire. There are no "UL Yellow Cards" for these semi-finished products.
8. The data given for dry material (+) are mostly average values of tests carried out on test specimens consisting of round bars $\varnothing 40-60 \mathrm{~mm}$. Considering the very low water absorption of POM, PET and PC, the values for the mechanical and electrical properties of dry (+) and damp (++) specimens of these materials can be considered almost equal.
9. Test piece: Type 1 B
10. Test speed: $20 \mathrm{~mm} / \mathrm{min}$. ($5 \mathrm{~mm} / \mathrm{min}$ for PA6. $6+$ GF, POM-C + PTFE and PET TX)
11. Test speed: $1 \mathrm{~mm} / \mathrm{min}$.
12. Test specimen: cylinder ($\varnothing 12 \times 30 \mathrm{~mm}$)
13. Pendulum used: 15 J .
14. Measured on $10-\mathrm{mm}$ thick test specimens
15. Electrode configuration: two cylinders $\varnothing 25$ / $\varnothing 75 \mathrm{~mm}$; in transformer oil according to IEC 296; measured on 1-mm thick natural specimens. It is important to know that the dielectric strength of black extruded material (PA6, PA6.6, POM and PET) can be up to 50% lower than that of natural-coloured material. A possible microporosity in the centre of POM semi-finished products also results in a significant reduction in dielectric strength. This table is intended to assist you in selecting materials. The values listed here are within the usual range of product properties. However, they are not guaranteed property values and should not be used as the sole basis for construction. It should be noted that PA6.6 + GF is a fibre-reinforced material which is therefore considered anisotropic (properties are different dependent upon whether the fibres are parallel or perpendicular to the extrusion direction)
